CDS 230

Modeling and Simulation I

 Module 9Monte Carlo Simulation

Dr. Hamdi Kavak

http://www.hamdikavak.com
hkavak@gmu.edu

Monte Carlo simulation

- Named after the famous gambling complex in Monaco, France.

- Dates back to 1940s
- Very popular method used in many domains
- Obviously highly used in gambling,
- ... but also in physical sciences, chemistry, computational biology, finance, business,... .
- Heavily used in data science and optimization

Monte Carlo simulation

- Quantity of interest $(Q)=$? (too hard to compute analytically)

System

Monte Carlo simulation, in other words

- Is a computational method to estimate the value of a quantity of interest using a set of randomly generated numbers (random sample).
- Assume that the quantity of interest is very complex to compute analytically (e.g., via mathematical representation)
- It relies on the fact that a sample of a population behaves close enough to the one observed in the entire population.

Do you like Solitaire?

What is the chances to win the solitaire even before seeing the cards?

The deal 3 cards and 3 times around the deck option

Source: https://www.flickr.com/photos/bobb/43826727

Do you like Solitaire?

What is the chances to win the solitaire even before seeing the cards?

The deal 3 cards and 3 times around the deck option

After playing 100,000,000 games, it is found that only 8.7\% of cases win*.

Source: https://www.flickr.com/photos/bobb/43826727

Coin flipping example

- What is the odds of seeing heads up if you flip a fair coin one time?
- Fact: $\mathbf{5 0 \%}$ heads and $\mathbf{5 0 \%}$ tails.
- Assume that we don't know this fact or suspect that the coin is fixed. Can we estimate the odds using the Monte Carlo simulation method?
- Navigate to google.com and search: flip a coin
- Repeat this 10 times
- What did you observe?

Coin flipping example in Python

- Python code to simulate coin flipping
- Simulate 1 time, 10 times, 100 times, 1,000 times, and 10,000 times
- Simple coin flipping code

```
np.random.choice([0,1])
```

0 : Heads
1: Tails

More coin flipping examples

- Now the goal is to estimate the odds of the certain sequential combinations
- Sequences to estimate
- Flip three times and check if the sequence is Heads, Heads, Heads
- Flip three times and check if the sequence is Heads, Tails, Heads
- Flip five times and check if the sequence is Heads, Heads, Tails, Tails, Tails

Estimating the $\mathrm{Pi}(\pi)$ number example

Area of this circle is... πr^{2}

Area of the enclosing square is

$$
2 r * 2 r=4 r^{2}
$$

If we throw a dart randomly to this square, the odds of falling in the circle is... Area of circle

Area of square
or $\quad \frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}$

Estimating the $\mathrm{Pi}(\pi)$ number example

- Write Python code to throw dart at the square randomly.
- Record number of times that dart falls within the circle and total number of darts thrown.
- $\frac{\text { darts within circle }}{\text { total number of darts }} \cong \frac{\pi}{4}$
- Try it for 10, 100, 1,000, 10,000 and 100,000 darts.

Pi number example visualized

If we throw a dart randomly, the odds of falling in the circle is

$$
\frac{\text { Area of circle }}{\text { Area of square }}=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}
$$

The Monty Hall problem

- Based on a Television program called Let's Make a Deal hosted by Monty Hall.

Source: vos Savant, Marilyn (9 September 1990a). "Ask Marilyn". Parade Magazine: 16.
"Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?"

The Monty Hall problem

Now you have 2 options

Strategy 1: stick with your choice (door \#2)
Strategy 2: choose the other door (door \#3)

Python coding

- The Monty Hall problem.
- Implement the problem in python.
- Implement Strategy 1 and Strategy 2
- Strategy 1: stick with your choice
- Strategy 2: choose the other door
- Report which one is a better strategy based on $\mathrm{N}=1,000$ Monte Carlo runs.

How many Monte Carlo runs needed (N) ?

- Usually, higher N is better
- sometimes runs are too computationally intense so high N may not be feasible
- This is a trial-and-error process.
- Run the system N times and observe the average estimate and standard deviation.
- Are you comfortable with the standard deviation?
- Yes: N is good. Well done!
- No: N is not good, increase N and start over.

The bar dice game

- https://www.youtube.com/watch?v=cXNLrM10k E
- Roll five dice
- You are trying to have a Ship (6), Captain (5), Crew (4),... in the same order.
- Once you have the above three, Your score is the sum of the remaining two dice.
- Like Yahtzee, you have up to three rolls
- Can keep Ship (6), Captain (5), Crew (4) then roll the rest again.
- If you can't build the ship, captain, and crew in three rolls, you get 0 .

References

- Roger Eckhardt. Stan ulam, john von neumann, and the monte carlo method. Los Alamos Science, 15(131-136), p.30. 1987
- http://www.billturnbull.com/solitaire/solitaire.htm
- Eric Grimson, John Guttag, and Ana Bell. 6.0002 Introduction to Computational Thinking and Data Science. Fall 2016. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.
- Julian L. Simon. Resampling: The New Statistics (Second Edition). 1997.
- Mikael Amelin. Monte Carlo Simulation in Engineering. Course Compendium, KTH Royal Institute of Technology, Stockholm. 2015

